

SILOXAN PUTZ

Rivestimento silossanico ad effetto rustico granulato **elastomerico**. Idoneo su sistemi d'isolamento termico a cappotto, su supporti nuovi o vecchi, cavillati e in fase di assestamento o sottoposti a vibrazioni e sbalzi termici. Particolarmente elastico anche alle basse temperature. Additivi specifici proteggono il film dall'attacco batterico di alghe e muffe.

Basi Bianco = Base P - Base ED Colore Selezione "Colori per esterni"

Confezioni 13 litri

Caratteristiche del prodotto

Composizione A base di particolari coopolimeri acrilici e silossanici plastificati,

quarzo con granulometria da 1,0 - 1,2 mm o 1,5 mm solo su richiesta,

pigmenti e cariche selezionate resistenti alla luce e agli alcali.

Peso specifico 1,700 - 1,800 Kg/l.

Secco resina sul secco

Totale 11% + / - 1.

Resa media 1,0-1,2 mq/l; 1,8 Kg/mq. Con un fusto si coprono circa 14 mq.

(la resa può variare in base alla irregolarità del supporto e alla granulometria del prodotto).

Valori fisici secondo EN 13300

Aspetto del film $G_3 \text{ Opaco} < 10 \text{ G.U. } 85^\circ; \text{ ca. } 5 \text{ G.U. } 85^\circ$

Spessore del film secco 1,0 mm - 1,2 mm - 1,5 mm

Granulometria S₃ Grossa, da 1,0 mm a 1,5 mm

Copertura Ottima.

Riempimento Ottimo.

Resistenza all'esterno Ottima alla luce e agli agenti atmosferici.

Altre proprietà - film resistente all'attacco batterico di alghe e muffe.

- facile applicazione.

- ottima lavorabilità e lenta essiccazione, tale da facilitare

l'applicazione senza marcare attaccature o riprese.

- ottima elasticità.

- ottima idrorepellenza.

Determinazione della resistenza alle screpolature (crack-bridging ability)

Le classi di riferimento riportate nella norma UNI EN 1062-1 sono:

Classe	Larghezza della fessura [μm]	Velocità di apertura della fessura [mm/min]
A_1	> 100	-
A_2	> 250	0,05
A ₃	> 500	0,05
A ₄	> 1250	0,5
A_5	> 2500	0,5

I risultati ottenuti sono i seguenti (metodo di prova statico A):

N.	Dimensioni (mm)	Spessore (µm)	Temperatura di prova (°C)	Prima fessurazione (µm)	Capacità alla fessurazione
1	300x200x40	1500	23	879	A3
2	300x200x40	1400	23	804	A4
3	300x200x40	1300	23	961	A3

Rapporto di prova n. 233L del 15/05/2019 effettuato dalla GFC Chimica Srl di Ferrara.

Dalla classificazione riportata nella norma UNI EN 1062-7:2005 si può concludere che il ciclo di prodotti in esame ha una **resistenza alla screpolatura di Classe A3.**

Determinazione della permeabilità all'acqua e al vapore, valori fisici secondo UNI EN 1062-3:2008 e UNI EN ISO 7783:2012. Determinazione dell'aderenza per trazione diretta, norma UNI EN 1542, e dei valori termici di progetto, norma UNI EN 1745.

Prova	Risultato e valori
Grado di trasmissione dell'acqua	$w=0.032 \text{ kg/(m}^2/h^{0.5})$
liquida (permeabilità) UNI EN 1062	Classe W ₃

Grado di trasmissione del vapore	Sd = 1,1628 m
acqueo (permeabilità) UNI EN 7783	Classe V ₂
Forza di aderenza UNI EN 1542	> / = 0.30 MPa
Conducibilità termica UNI EN 1745	λ =1,11W/mK (P=50%) – specifiche CAM
	$\lambda = 1.21 \text{W/mK (P=90\%)}$

Certificato da GFC Chimica con rapporto di prova n. 363/L del 16.06.2019 e n. 232/L del 15.05.2019.

Dalla classificazione riportata nella norma UNI EN 1062, UNI EN ISO 7783 e UNI EN 1745 si può concludere che il prodotto in esame ha una <u>permeabilità all'acqua liquida di classe W3</u> e una <u>permeabilità al vapore di Classe V2</u>, con parametri di <u>conducibilità termica</u> che contribuiscono al calcolo dell'efficienza energetica per sistemi a cappotto o materiali isolanti che devono rispettare i criteri ambientali minimi (CAM), per specifici interventi in ambito di efficienza energetica.

Il SILOXAN PUTZ può essere utilizzato per rivestire intonaci cementizi, cemento armato a vista, pannelli ed elementi prefabbricati in calcestruzzo, fibrocemento, pannelli isolanti tipo polistirene/poliuretano.

In particolare, è idoneo anche a rivestire sistemi isolanti di tipo:

Lana di vetro	Lana di roccia	Perlite espansa
Fibre in poliestere	Polistirene espanso	Polistirene estruso
Poliuretano espanso	Agglomerato di gomma	Sughero
Grafite	Agglomerato di poliuretano	calcestruzzi alleggeriti

Conservazione	In confezioni ben chiuse e al riparo dal gelo, ad una temperatura tra $+ 5 e + 30$ °C.	
Modo di impiego		

Applicazione Stendere con spatola in acciaio e compattare a finire con quella di

plastica.

Diluizione Pronto all'uso, nel caso aggiungere acqua dal 2% al 3% in volume.

Temperatura di

applicazione 8 - 30 °C, umidità relativa max 85%.

Pulizia degli attrezzi Con acqua subito dopo l'uso.

Avvertenze: L'applicazione deve essere effettuata in condizioni climatiche

favorevoli (come sopra indicato); altrimenti le caratteristiche finali

del prodotto potrebbero essere compromesse. N.B.: non applicare sotto i raggi diretti del sole.

Il prodotto completa il processo di polimerizzazione e di essicazione in 10 o 15 giorni in condizioni ambientali ottimali (5 - 30 °C; U.R. max 85%).

Qualora in questo lasso di tempo si dovessero verificare eventi piovosi, si potrebbero evidenziare antiestetiche colature dall'aspetto traslucido e appiccicoso.

Tale fenomeno è di natura temporanea; non influisce sulle resistenze del prodotto e può essere facilmente eliminato effettuando un idro-lavaggio o attendendo i successivi eventi piovosi.

Sistemi di applicazione

A) Su muri nuovi:

- attendere circa un mese per la completa stagionatura del supporto;
- applicare una mano Fondo acril-silossanico 0,5 mm, diluita dal 5 al 10% in volume con acqua;
- applicare Siloxan Putz con spatola in acciaio, compattando a finire con quella di plastica.

B) Su muri già verniciati:

- accurata spazzolatura per l'eliminazione delle incoerenze, se presenti, sulla superficie da trattare;
- applicare una mano di Ancoral PLS diluita al 40 60% in volume con Diluente Sintetico 914090;
- applicare Siloxan Putz con spatola in acciaio, compattando a finire con quella di plastica.

N.B.: data la particolarità del prodotto utilizzare sempre lo stesso lotto di produzione, diversamente miscelare il tutto prima dell'applicazione.

Voce di capitolato

Rivestimento ad effetto granulare silossanico **elastomerico** (tipo SILOXAN PUTZ); a base di particolari coopolimeri acrilici e silossanici plastificati, quarzo con granulometria da 1,0 - 1,2 mm, o 1,5 mm solo su richiesta, pigmenti e cariche selezionate resistenti ai raggi U.V. ed alcalinità. Idoneo su sistemi d'isolamento termico a cappotto, su supporti nuovi o vecchi, cavillati e in fase di assestamento o sottoposti a vibrazioni e sbalzi termici.

Resistenza alle screpolatura di Classe A3 secondo la Norma UNI EN 1062-7:2005 (Rapporto di prova n. 233/L del 15/05/2019 effettuato dalla GFC Chimica Srl di Ferrara).

Permeabilità all'acqua liquida di classe W₃, permeabilità al vapore di Classe V₂ secondo le norme UNI EN 1062 e UNI EN ISO 7783 (Rapporto di prova n. 232/L del 15.05.2019 effettuato dalla GFC Chimica Srl di Ferrara) con parametri di conducibilità termica che contribuiscono al calcolo dell'efficienza energetica per sistemi a cappotto o materiali isolanti che devono rispettare i criteri ambientali minimi (CAM), per specifici interventi in ambito di efficienza energetica.

Peso specifico 1,700 - 1,800 kg/l.

Resa media 1,0-1,2 mg/l; 1,8 Kg/mg. Con un fusto si coprono circa 14 mg.

(la resa può variare in base alla irregolarità del supporto e alla granulometria del prodotto).

Secco resina sul secco Totale

11% +/- 1.

Tutte le informazioni tecniche qui contenute sono fornite al meglio della ns. esperienza e conoscenza tecnica. Linvea garantisce la buona riuscita del lavoro realizzato con i ns. prodotti, a condizione che in sede di applicazione vengano seguite scrupolosamente le indicazioni tecniche sopra riportate ed il lavoro venga eseguito a perfetta regola d'arte, con perizia e professionalità.

Il Cliente è tenuto a verificare, prima della posa in opera, l'idoneità del prodotto per l'uso previsto, se necessario anche con prove preliminari. Ogni e qualsiasi responsabilità da parte di Linvea è esclusa e declinata, per i risultati ottenuti con l'impiego del materiale errato e/o al di fuori delle regole della buona tecnica.

Per informazioni più dettagliate si prega di consultare il nostro servizio di ASSISTENZA TECNICA.